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Abstract
Vitamin D deficiency and dysfunctional adipose tissue are involved in the 

development of cardiometabolic disturbances (eg, hypertension, insulin resistance, 
type 2 diabetes mellitus, obesity, and dyslipidemia). We studied 50 obese (body 
mass index [BMI]: 43.5 ± 9.2 kg/m2) and 36 normal weight participants (BMI: 
22.6 ± 1.9 kg/m2). Obese individuals were classified into different subgroups 
according to medians of observed anthropometric parameters (BMI, body fat 
percentage, waist circumference, and trunk fat mass). The prevalence of vitamin 
D deficiency (25-hydroxyvitamin D, 25 (OH)D < 50 nmol/L) was 88% among 
obese patients and 31% among nonobese individuals; 25(OH)D were lower in the 
obese group (27.3 ± 13.7 vs 64.6 ± 21.3 nmol/L, p < .001). There was a negative 
correlation between vitamin D and anthropometric indicators of obesity: BMI: 
(r = - 0.64, p < .001), waist circumference (r = -0.59; p < .001), and body fat 
percentage (r = -0.64; p < .001) as well with fasting plasma insulin (r = -0.35; p < 
.001) and homeostasis model assessment of insulin resistance (r = - 0.35; p < .001). 
There was a negative correlation between vitamin D level and leptin and resistin 
(r = -.61; p < .01), while a positive association with adiponectin concentrations 
were found (r = .7; p < .001). Trend estimation showed that increase in vitamin D 
level is accompanied by intensive increase in adiponectin concentrations (growth 
coefficient: 12.13). In conclusion, we observed a higher prevalence of vitamin D 
deficiency among obese participants and this was associated with a proatherogenic 
cardiometabolic risk profile. In contrast, a positive trend was established between 
vitamin D and the protective adipocytokine adiponectin. The clinical relevance of 
this relationship needs to be investigated in larger studies.
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Obesity
According to the 11th International Classification of Diseases, obesity is 

chronic non-infective disease [1]. It is characterized by an increase in fat mass to 
an extent that it may have an adverse effect on health, and occurs as a consequence 
of imbalance between energy intake and energy expenditure [2]. The prevalence of 
obesity is increasing worldwide as more than 1.9 billion adults are overweight and 
of these over 600 million were obese [3]. From the viewpoint of everyday clinical 
practice, calculation of body mass index (BMI) as the ratio of weight and height 
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squared is a commonly used diagnostic tool in the detection of 
overweight and obesity in adults. Currently, obesity is defined 
as BMI greater than or equal to 30 kg/m2 and BMI greater or 
equal to 25 is classified as overweight [4].

The diagnostic procedure in obese patients includes a 
number of parameters, with a focus on body fat distribution 
and metabolic profile of the person. Among anthropometric 
parameters significant are skinfolds, diameters and body 
circumferences. It has been shown that the measurement 
of sagittal abdominal diameter (SAD) is a good indicator 
of cardiovascular and metabolic risk [5]. Adipose mass 
distribution is very important for the assessment of obesity, 
because complications of obesity are caused mostly by visceral 
fat accumulation. The size of abdominal fat, especially its 
visceral depot, is responsible for the occurrence of insulin 
resistance, metabolic complications and cardiovascular 
diseases in obese [6]. Measurement of waist circumference 
is recommended to mark intra-abdominal fat depots and its 
correlates with cardiometabolic risk factors [6].

Obesity is characterized by a number of comorbidities 
such as type 2 diabetes mellitus, coronary heart disease, 
myocardial infarction, hypertension, atherogenic dyslipidemia, 
and osteoarthritis [7, 8]. As a consequence of obesity, insulin 
resistance is an initial step towards to development of type 
2 diabetes mellitus and most patients with diabetes are 
overweight [9]. In addition, it is estimated that 30% of obese 
people have lipid and lipoprotein disorders [10].

Adipose tissue produces several bioactive peptides, 
called adipocytokines, which are implicated in the complex 
pathogenesis of obesity-related metabolic disturbances.

Dysfunctional Adipose Tissue
Adipose tissue is considered as a major orchestrator 

of the obesity-related cardiometabolic pathophysiology. 
Recent investigations have revealed a number of different 
mechanisms by which adipose tissue takes part in the complex 
pathophysiology of insulin resistance, type 2 diabetes mellitus 
and cardiovascular disorders. Cardiometabolic consequences of 
obesity could be the result of the enlargement of adipose tissue 
mass (adiposity), and its adverse metabolic, endocrinologic 
and immunologic activities (adipose tissue dysfunction, 
adiposopathy, or “sick fat”) [11-14].

Dysfunctional adipose tissue changes its standard endocrine 
pattern decreasing production of “defensive” adipokines such as 
adiponectin, and increasing secretion of “offensive” adipokines 
with pro-inflammatory, diabetogenic and proatherogenic 
properties [15-21]. The majority of pro-inflammatory 
adipokines is product of immune cells that populate adipose 
tissue [22]. Basically, obesity-linked complications can be 
considered as the result of the imbalance between pro- and 
anti-inflammatory adipokines. Hypoxia has been designated 
to be the key factor in the dysregulation of adipose tissue 
function; it induces secretion of key inflammation-related 
adipokines, including leptin and interleukin 6 (IL-6), and 
inhibits secretion of adiponectin which has anti-inflammatory 
and insulin-sensitising properties [13, 19, 23-25].

Overall, changes of adipose tissue microenvironment 
in obesity affect the metabolic and endocrine function of 
adipocytes enhancing development of low-grade inflammation 
and insulin resistance that are responsible for development of 
cardiometabolic complications.

Vitamin D and Cardiometabolic Risk
Serum concentrations of 25-hydroxyvitamin D, 25(OH)

D, are considered the best indicator of total body vitamin D 
stores, as value reflect total dietary intake and exposure to 
ultraviolet radiation [26]. Vitamin D deficiency is defined as 
25(OH)D less than 50 nmol/l [26].

Today, there is evidence suggesting that vitamin D 
is a potential risk marker and modifiable risk factor for 
cardiovascular diseases [27, 28]. After 10-year follow-
up, Giovannucci et al. found that men with vitamin D 
deficiency were at higher risk of myocardial infarction [28]. 
In addition, it was found that vitamin D deficiency is related 
to 2-fold increased cardiovascular risk among participants 
with hypertension [29]. Hence, the question is whether the 
determination of the degree of vitamin D deficiency can be 
used to estimate cardiometabolic risk? Also, several studies have 
proposed a relationship between vitamin D status and insulin 
resistance as they have found a negative association between 
vitamin D and fasting plasma insulin levels and homeostasis 
model assessment of insulin resistance (HOMA-IR) [30-33]. 
Because pancreatic β-cells express vitamin D receptors, so a 
potential explanation is that vitamin D acts on these receptors 
[34] to stimulate pancreatic insulin secretion by regulating 
calcium entering into the β-cells [35]; thus, vitamin D may 
stimulate pancreatic insulin secretion. Additionally, in patients 
with type 2 diabetes mellitus, there is a suggestion that glucose 
intolerance improves after vitamin D supplementation [36, 
37]. In relation to lipid profile, different results were obtained 
after vitamin D supplementation: Wamberg et al. failed to find 
any effects of increasing 25(OH)D levels on plasma lipids [38], 
while a study by Major et al. found that calcium and vitamin 
D supplementation decreased LDL-cholesterol levels [39]. 
As dyslipidemia is an important risk factor for cardiovascular 
diseases, there is a need for randomized controlled trials to 
clarify the possible effects of vitamin D on atherogenic 
dyslipidemia.

Adipose tissue stores energy, but the secretory products 
of adipocytes have been implicated in the pathogenesis of 
obesity-related metabolic disturbances. Namely, adipose tissue 
produces several bioactive peptides, known as adipocytokines, 
including leptin, TNF-α, IL-6, adiponectin, and resistin. 
Proinflammatory and proatherogenic adipocytokines are 
involved in the development of insulin resistance, type 
2 diabetes mellitus, and atherosclerosis [40]. It has been 
shown that in obese patients with dysfunctional adipose 
tissue, leptin levels are elevated, while a reduction in caloric 
intake is accompanied by reduced leptin concentrations [41]. 
Subcutaneous and visceral adipose tissue manifests different 
morphological and functional characteristics. In this regard, 
dysfunctional changes in adipose tissue are particularly 
expressed in visceral fat depots [42, 43], and individuals with 
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predominantly excessive visceral adiposity are particularly 
vulnerable. It was found that 25(OH)D serum concentrations 
showed negative correlation with leptin levels [44, 45]. There 
is also evidence that 25(OH)D levels are positively associated 
with circulating adiponectin [46, 47].

Vitamin D deficiency has a trend to promote the 
development of a more proatherogenic cardiometabolic risk 
profile in obese patients. On the other hand, there is a need 
to investigate whether and to what extend vitamin D may 
improve adipose tissue function and thus prevent obesity-
related diseases. This is also the central theme of our research 
work. In this context, the goal of this study was to determine 
the vitamin D levels in obese and non-obese individuals and to 
assess the relationship between vitamin D and anthropometric 
measurements and cardiometabolic parameters.

Materials and Methods
Patients and methods

The inquired group consisted of 50 obese patients (BMI ≥ 
30 kg/m2, 34 women and 16 men with an average age of 38.2 
± 11.3 years) and 36 normal weight participants (18 females 
and 18 males, average age 33.5 ± 6.5 and BMI from 18.5 to 
25 kg/m2. Table 1 presents characteristics of anthropometric 
parameters of study and control groups based on gender in 
form Mean ± SD. The enquires were taken at the Department 
of Endocrinology, Diabetes and Metabolic Disorders, 
Clinical Centre of Vojvodina, Novi Sad, Serbia. Enquires 
were conducted according to the principles outlined in the 
Declaration of Helsinki. We excluded patients with recent 
weight changes and those who had been treated with vitamin 
D within 3 months prior, and also with previous history of 

diabetes mellitus, dyslipidemia, hypertension, heart, kidney, 
hepatic, malignant and psychiatric disorders, calcium level 
disturbances, Cushing’s syndrome and thyroid dysfunction.

Anthropometric measurements
Body weight (BW) was determined using calibrated 

beam-type balance to the nearest 0.1 kg. In the standing 
position, body height (BH) was measured using a Harpenden 
anthropometer (Holtain Ltd, Croswell, UK) with the precision 
of 0.1 cm. The ration of body weight (BW) and the square 
of body height (BH) is body mass index (BMI). The flexible 
metric tape with the precision of 0.1 cm was used for measuring 
waist circumference (WC) at the level of middle distance 
between the lowest rib and the highest point on the iliac crest. 
The waist circumference correlates well with the size of the 
visceral abdominal adipose tissue, but also with the level of 
lipids, lipoproteins and insulin, and it is a significant predictor 
of the comorbidity of obesity [47-49]. BMI provides a measure 
that allows the comparison of the adiposity of individuals of 
different heights and weights, but does not provide sufficient 
information about fat mass and the relationship between 
FAT% and BMI is gender- and age-dependent [50]. Body fat 
percentage (FAT%) and trunk fat mass in kg (FAT trunk) was 
evaluated using bioelectrical impedance analysis (Tanita TBF-
310 Body Composition Analyzer: Tanita Corporation, Tokyo, 
Japan). During the anthropometric measurements, patients 
were without shoes and wearing light indoor clothing.

Laboratory measurements
The mercury sphygmomanometer was used for measuring 

systolic blood pressure (SBP) and diastolic blood pressure 
(DBP) in the sitting position after 10 to 15 minutes rest. 
Serum samples were obtained after an overnight fasting. The 
values of low-density lipoprotein cholesterol (LDL-C) were 
calculated using Friedewald equation [51]. The triglyceride 
(TG) levels were determined by an enzyme-based method 
and high-density lipoprotein cholesterol (HDL-C) was 
determined by the precipitation method with sodium 
phosphowolframate. Fasting plasma glucose, glucose oxidase 

– phenol + aminophenazone method, and fasting plasma 
insulin (FPI) levels by enzyme-linked immunosorbent assay. 
Homeostasis model assessment (HOMA-IR) was used to 
evaluate insulin resistance using the following formula: fasting 
glucose (mmol/L) x fasting insulin (µU/ml)/22.5 [52]. An oral 
glucose tolerance test was performed to obtain glucose intake 

Table 1: Characteristics of anthropometric parameters of examined groups and in regard to gender.

Anthropometric
parameters

Obese group
(n = 50)

Mean ± SD

Control group
(n = 36)

Mean ± SD
Obese

Women (n = 52) Men (n = 34)

Obese
(n=34)

Mean ± SD

Control
(n = 18)

Mean ± SD

Obese
(n = 16)

Mean ± SD

Control
(n = 18)

Mean ± SD

Age, years 38.2 ± 11.3 33.5 ± 6.5 37.5 ± 11.1 34.3 ± 7.9 39.6 ± 12.0 32.8 ± 4.7

SBP, mmHg 133.0 ± 20.5 114.0 ± 9.1 131.0 ± 19.8 114.4 ± 9.8 137.2 ± 21.9 113.9 ± 8.5

DBP, mmHg 85.00 ± 13.2 78.0 ± 4.6 82.5 ± 13.2 78.1 ± 5.5 90.3 ± 12.2 78.3 ± 3.8

BW, kg 126.8 ± 29.1 70.9 ± 12.5 117.4 ± 26.0 61.3 ± 7.0 146.7 ± 25.6 81.0 ± 7.6

BMI, kg/m2 43.5 ± 9.2 22.6 ± 1.9 42.4 ± 9.4 21.4 ± 1.8 45.9 ± 8.7 23.9 ± 1.1

FAT% 44.0 ± 7.6 21.8 ± 6.4 46.8 ± 5.4 25.4 ± 5.4 38.2 ± 8.3 17.7 ± 5.0

FAT trunk, kg 26.7 ± 7.9 8.1 ± 3.1 25.6 ± 6.6 7.8 ± 2.8 29.3 ± 10.3 8.3± 3.3

WC, cm 128.5 ± 20.4 83.6 ± 9.3 122.8 ± 18.9 77.6 ± 8.0 140.7 ± 18.4 89.8 ± 5.5

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; BW, body weight; BMI, body mass index; FAT%, fat adipose tissue 
percentage; FAT trunk, trunk fat mass; WC, waist circumference; MEAN, Average value; SD, standard deviation.
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(2-hour plasma glucose and 2-hour plasma insulin).

ELISA (Enzyme-linked immunosorbent assay) method 
was used (enzyme immunoassay kit, Mediagnost, GmbH) for 
the quantitative determination of serum leptin, resistin and 
adiponectin levels in ng/mL. As the best indicator of total body 
vitamin D stores, the serum concentrations of 25(OH)D were 
assessed using an enzyme immunotest (Immunodiagnostic 
system, United Kingdom). The deficiency of vitamin D was 
defined as 25(OH)D<50 nmol/L [53, 54].

Statistical analysis
Programming environment MATLAB. 7.11.0 (Statistical 

toolbox) were used for data analysis-descriptive statistics, 
Mann Whitney test, linear correlation, linear regression and 
trend estimation with growth coefficients (GC). Data were 
expressed as Mean ± SD and the p values are classified as: < 
.001***, < 0.01**, < 0.05*, and > .05.

Obese individuals were classified into different 
subgroups with respect to previously calculated medians 
of anthropometric parameters: BMI median (38.4 kg/m2), 
FAT% median (45.1%), WC median (126.5 cm) and FAT 
trunk median (25.7 kg). According to the median of the 
anthropometric parameters, obese patients were classified into 
two subgroups based on whether their values were larger or 
smaller than the median value. Linear correlations, regression 
lines and increasing (↑) or decreasing (↓) trends between 
vitamin D and adipocytokines within different subgroups 
were considered. Regression lines were obtained by using the 
method of least squares.

Results
Table 2 shows the differences between the obese and the 

control groups with respect to metabolic parameters. Nonobese 
participants had significantly lower FPI level and HOMA-IR 
(p < .001). Among lipid and lipoprotein parameters, HDL-C 
levels were significantly lower in the obese patients (1.06 ± 

0.23 mmol/l) than in the nonobese participants (1.42 ± 0.31 
mmol/L; p < .001).

The prevalence of vitamin D deficiency (25(OH)D < 
50 nmol/L) was 88% among obese patients and 31% among 
nonobese individuals (p < .001). The mean serum 25(OH)D level 
was significantly lower in the obese group than in the control 
group (27.3 ± 13.7 vs 64.6 ± 21.3 nmol/L; p < .001; Figure 1).

Table 3 shows that in all patients, coefficients of linear 
correlation between 25(OH)D levels and anthropometric 
parameters are negative and significant (p < .001). A negative 
but slightly weaker correlation was also noted between serum 
25(OH)D and SBP (r = -0.36; p < .001) while there was no 
correlation with DBP (r= -0.14; p > .05).

Results in Table 3A indicate that there is a negative 
coefficient of linear correlation between vitamin D and all 
observed anthropometric parameters, separately, both for 
women and for men.

Table 4 presents a negative correlation between vitamin D 
and FPI (r = -0.35; p < .001) and HOMA-IR (r = -0.35; p < 
.001), while correlation with HDL-C was positive (r = 0.40, 
p < .001). Vitamin D did not correlate with other metabolic 
parameters (glycaemia and lipids).

Table 2: Metabolic parameters of study groups.

Groups

pObese (n = 50) Control (n = 36)

Mean ± SD Mean ± SD

FPG, mmol/l 4.9 ± 1.1 4.7 ± 0.4 p > .05

2h PG, mmol/l 5.7 ± 2.0 5.0 ± 1.2 p < .05*

FPI, mU/mL 17.7 ± 10.8 6.7 ± 4.2 p < .001***

2h PI, mU/mL 48.9 ± 44.3 23.4 ± 21.1 p < .001***

HOMA-IR 4.0 ± 2.7 1.4 ± 1.0 p < .001***

2h HOMA-IR 14.1 ± 16.9 5.9 ± 6.9 p < .001***

LDL-C, mmol/l 3.6 ± 1.0 3.2 ± 0.8 p > .05

HDL-C, mmol/l 1.1 ± 0.2 1.4 ± 0.3 p < .001***

TG, mmol/l 1.7 ± 1.5 1.2 ± 0.9 p < .01

Abbreviations: FPG, fasting plasma glucose; 2h PG, 2-hour plasma 
glucose; FPI, fasting plasma insulin; 2h PI, 2-hour plasma insulin; 
HOMA-IR, homeostasis model assessment of insulin resistance; LDL-C, 
LDL cholesterol; HDL-C, HDL cholesterol; TG, triglycerides; 25(OH)
D, 25-hydroxyvitamin D.

Figure 1: Mean serum 25(OH)D concentrations in the examined 
groups. 25(OH)D indicates 25-hydroxyvitamin D.

Table 3: Coefficients of linear correlation (r) between 25(OH)D level and 
examined anthropometric parameters for study patients

25(OH)D

r p

BW, kg -0.57 p < .001***

BMI, kg/m² -0.64 p < .001***

WC, cm -0.59 p < .001***

SBP, mmHg -0.36 p < .001***

DBP, mmHg -0.14 p > .05

FAT% -0.64 p < .001***

Abbreviation: BW, body weight; BMI, body mass index; WC, waist 
circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
FAT%, fat adipose tissue percentage; 25(OH)D, 25-hydroxyvitamin D.



Journal of Obesity and Chronic Diseases  |   Volume 1 Issue 2, 2017 25

Influence of Vitamin D Deficiency on Cardiometabolic Risk in Obesity
Stokić et al.

Table 5 lists linear equations that describe regression lines 
and trends: ↑ (increasing) and ↓ (decreasing). Linear equations 
were obtained by method of least squares. For almost all 
observed parameters, 25(OH)D level shows decreasing 
dependence, except for HDL-C.

The results in Table 5A represents that vitamin D has a 
decreasing trend compared to all observed anthropometric 
parameters, based on gender.

Further, we assessed the relationship between vitamin D 
and adipose tissue dysfunction. According to the median of 
the anthropometric parameters (BMI, FAT%, WC, and FAT 
trunk), obese patients were classified into 2 subgroups, those 
who have values larger and those who have values smaller than 
the median value.

Correlations between vitamin D and adipocytokines 
within different subgroups of BMI and FAT% are presented 
in Table 6. In the subgroup of patients with BMI ≥ 38.4 kg/
m2, significant coefficients of linear correlation were obtained: 
negative with leptin and resistin (r = -.61, p < 0.01) and 
positive with adiponectin levels (r = 0.7, p < 0.001). Vitamin 

D did not correlate with adipocytokines in other subgroups of 
anthropometric parameters (Table 7).

Table 4: Coefficients of linear correlation (r) between 25(OH)D level 
with metabolic parameters for all study patients.

Correlation (N=86)
25(OH)D

r p

FPG, mmol/l -0.19 p > .05

2h PG, mmol/l -0.17 p > .05

FPI, mIU/L -0.35 p <. 001***

2h PI, mIU/L -0.19 p > .05

HOMA-IR -0.35 p < .001***

2h HOMA-IR -0.18 p > .05

LDL-C, mmol/l -0.10 p > .05

HDL-C, mmol/l 0.40 p < .001***

TG, mmol/l -0.09 p > .05

Abbreviations: FPG, fasting plasma glucose; 2h PG, 2-hour plasma 
glucose; FPI, fasting plasma insulin; 2h PI, 2-hour plasma insulin; 
HOMA-IR, homeostasis model assessment of insulin resistance; 
LDL-C, LDL cholesterol; HDL-C, HDL cholesterol; TG, triglycerides; 
25(OH)D, 25-hydroxyvitamin D.

Table 5: Linear dependencies between all observed parameters and 25(OH)D.

25(OH)D level

Linear equations Trends

Body weight (BW), kg 25(OH)D = -0.40 x BW + 84.16 ↓

Body mass index 
(BMI), kg/m2 25(OH)D = -1.29 x BMI + 87.79 ↓

Waist circumference 
(WC), cm 25(OH)D = -0.53 x WC + 101.42 ↓

Systolic blood pressure 
(SBP), mm Hg 25(OH)D = -0.47 x SBP + 102.19 ↓

Diastolic blood pressure 
(DBP), mm Hg 25(OH)D = -0.32 x DBP + 69.23 ↓

Body fat percentage, 
BF% 25(OH)D = -1.20 x BF% + 84.45 ↓

Fasting plasma glucose 
(FPG), mmol/L 25(OH)D = -5.56 x FPG + 69.82 ↓

2-hour plasma glucose 
(2h PG), mmol/L 25(OH)D = -2.49 x 2h PG +56.42 ↓

Fasting plasma insulin 
(FPI), mU/mL 25(OH)D = -0.86 x FPI + 54.22 ↓

2-hour plasma insulin 
(2h PI), mU/mL 25(OH)D = -0.12 x 2h PI + 47.62 ↓

Homeostasis model 
assessment of insulin 25(OH)D = -3.55 x HOMA-IR + 53.31 ↓

2-hour homeostasis 
model assessment of 25(OH)D = -0.32 x 2h HOMA-IR + 46.31 ↓

LDL cholesterol 
(LDL-C), mmol/L 25(OH)D = -2.79 x LDL + 52.38 ↓

HDL cholesterol 
(HDL-C), mmol/L 25(OH)D = 31.98 x HDL + 4.20 ↑

Triglycerides (TG), 
mmol/L 25(OH)D = -1.81 x TG + 45.57 ↓

Abbreviation: 25(OH)D, 25-hydroxyvitamin D.

Table 5A: Linear dependencies between all observed parameters and 
25(OH)D respect to gender.

25(OH)D level

Women (n=52) Men (n=34)

Linear equations Trends Linear equations Trends

BW, kg
25(OH)D=-

0.45*BW + 82.31 ↓
25(OH)D=-

0.47*BW + 103.21 ↓

BMI, kg/m2
25(OH)D=-

1.24*BMI + 81.37 ↓
25(OH)D=-

1.40*BMI + 98.63 ↓

WC, cm
25(OH)D= 

-0.58*WC + 100.28 ↓
25(OH)D=-

0.59*WC + 118.65 ↓

SBP, mm Hg
25(OH)D=-

0.52*SBP + 103.42 ↓
25(OH)D=-

0.58*SBP + 123.26 ↓

DBP, mm 
Hg

25(OH)D=-
0.21*DBP + 55.03 ↓

25(OH)D=-
1.02*DBP + 136.82 ↓

BF%
25(OH)D=-

1.41*FAT% + 93.59 ↓
25(OH)D=-

1.23*FAT% + 84.64 ↓

Table 3A: Coefficients of linear correlation (r) between 25(OH)D level 
and examined anthropometric parameters for study patients in relation 
to gender.

25(OH)D

Women (n = 52) Men (n = 34)

r p r p

BW, kg -0.63 < 0.001*** -0.71 < 0.001***

BMI, kg/m² -0.63 < 0.001*** -0.71 < 0.001***

WC, cm -0.63 < 0.001*** -0.69 < 0.001***

SBP, mmHg -0.37 < 0.01** -0.46 < 0.01**

DBP, mmHg -0.08 > 0.05 -0.42 < 0.05*

FAT% -0.66 < 0.001*** -0.61 < 0.001***
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Tables 8 and 9 display linear equations that describe 
regression lines and increasing (↑) or decreasing (↓) trends 
between observed parameters: 25(OH)D and adipocytokines. 
The method of least squares was used to obtain linear 
equations. Within the subgroups of patients with higher 
degree of obesity (BMI ≥ 38.4 kg/m2 and FAT% ≥ 45.1), 
trend estimation shows inverse dependence between 25(OH)
D level and leptin and resistin (Table 8). The same relationship 
was also noted in subgroups with WC and FAT trunk above 
the median—higher 25(OH)D is accompanied by decreasing 
trend of leptin and resistin (Table 9).

Observing all subgroups of obese patients, a positive 
trend was found between 25(OH)D level and adiponectin 
concentrations: with the higher 25(OH)D levels, adiponectin 
levels rise. The increase in adiponectin level was predominant 
among the subgroup of patients with BMI ≥ 38.4 kg/m2, with 
GC of 12.13 (Table 8). Coefficient of adiponectin growth was 
also noticed in the subgroups of WC ≥ 126.5 cm (GC = 4.3) 
and FAT trunk ≥ 25.7 kg (GC = 4) (Table 9).

Discussion
Vitamin D and obesity

Vitamin D deficiency is associated with cardiometabolic 

risk factors (e.g. hypertension, insulin resistance, type 2 diabetes 
mellitus, obesity, and dyslipidemia). In this context, there 
are reports of an association between obesity and vitamin D 
deficiency [55, 56]. Many clinical and epidemiological studies 
reported that obese patients have lower serum concentrations 
of 25(OH)D. In our study, the obese patients had significantly 
lower values of 25(OH)D than normal weight participants (p 
< .001). Consistent with prior studies, we found that vitamin 
D concentrations negatively correlated with BMI and WC 
[54-56]. Additionally, we also noted that fat mass is inversely 
associated with 25(OH)D levels which is in consistent with 
previous findings [57, 58].

After considering the linear dependence between 
anthropometric indicators of obesity (BMI, WC, and 
FAT%) and 25(OH)D level, we found that for all mentioned 
parameters, the 25(OH)D level shows decreasing trends. With 
the increasing degree of obesity, vitamin D deficiency worsens. 
Since the BMI, as a practical measure of fatness, cannot 
distinguish fat mass from lean, we also took into consideration 
FAT%. Using FAT content in body composition to determine 
obesity, our results show that a person with 30% body fat mass 
has a vitamin D level of 51.4136 nmol/L for females and 
47.7475 nmol/L for males. Furthermore, our data indicate that 
vitamin D deficiency becames worst as body fat mass increases.

Table 8: Linear dependencies and growth coefficients between 
adipocytokines and 25(OH)D within subgroups of BMI and FAT%.a

Subgroups 25(OH)D, nmol/L

BMI < 38.4 
kg/m2 Linear Equations Trends

Growth 
Coefficient (GC)

Leptin, ng/mL 0.55 × LEP + 29.79 ↑ 0.55

Resistin, ng/mL 0.20 × RES + 7.41 ↑ 0.2

Adiponectin, ng/
mL 1.9 × ADP + 1219 ↑ 1.9

BMI ≥ 38.4 kg/m2

Leptin, ng/mL -0.79 × LEP + 75.89 ↓ -0.79

Resistin, ng/mL -0.21 × RES + 22.28 ↓ -0.21

Adiponectin, ng/
mL 12.13 × ADP + 887.41 ↑ 12.13

Fat% < 45.1

Leptin, ng/mL -0.16 × LEP + 52.53 ↓ -0.16

Resistin, ng/mL 0.01 × RES + 14.17 ↑ 0.01

Adiponectin, ng/
mL 9.0 × ADP + 1019.2 ↑ 9

Fat% ≥ 45.1

Leptin, ng/mL -0.002 × LEP + 52.53 ↓ -0.002

Resistin, ng/mL -0.11 × RES + 20.13 ↓ -0.11

Adiponectin, ng/
mL -0.6 × ADP + 1186.1 ↓ -0.6

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; BMI, body mass index; 
FAT%, fat adipose tissue percentage; LEP, leptin; RES, resistin; ADP, 
adiponectin.
aGrowth coefficients describe the rate of increasing/decreasing of 25(OH)
D level in relation to adipocytokines concentrations.

Table 7: Coefficients of linear correlation (r) between 25(OH)D Level 
and adipocytokines in subgroups of WC and FAT Trunk.

25(OH)D, nmol/L

WC, Median, cm FAT trunk, Median, kg

< 126.5 ≥ 126.5 < 25.7 ≥ 25.7

Leptin, ng/mL
r = 0.2
p > .05

r = -0.22
p > .05

r = -0.08
p > .05

r = -0.1
p > .05

Resistin, ng/mL
r = 0.2
p > .05

r = -0.35
p > .05

r = 0.03
p > .05

r = -0.33
p > .05

Adiponectin, ng/mL
r = 0.13
p > .05

r = 0.3
p > .05

r = 0.22
p > .05

r = 0.2
p > .05

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; WC, waist 
circumference; FAT trunk, trunk fat mass.

Table 6: Coefficients of linear correlation (r) between 25(OH)D Level 
and adipocytokines in subgroups of BMI and FAT%.

25(OH)D, nmol/L

BMI, Median, 
kg/m2

FAT %, Median

< 38.4 ≥ 38.4 < 45.1 ≥ 45.1

Leptin, ng/mL
r = 0.4

p > .05

r = - 0.61

p < .01**

r = - 0.12

p > .05

r = -0.00

p > .05

Resistin, ng/
mL

r = 0.5

p > .05

r = -0.6

p < .05*

r = 0.02

p > .05

r = -0.31

p > .05

Adiponectin, 
ng/mL

r = 0.1

p > .05

r = 0.7

p < .001***

r = 0.44

p < 0.5*

r = -0.04

p > .05

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; BMI, body mass 
index; FAT%, fat adipose tissue percentage
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Vitamin D and cardiometabolic risk

Botella-Carretero et al. [59] emphasized that serum 
25(OH)D concentrations negatively correlats with serum TG 
while they positively associated with HDL-C concentrations. 
However, we found no linear correlation of vitamin D values 
with LDL-C or TG but positive correlation with HDL-C 
was noted (r = 0.4; p < .001). Our results are in accordance 
with others who also reported a positive association between 
25(OH)D and HDL-C concentration [59]. Different results 
were obtained after vitamin D supplementation in relation 
to the lipid profile. Wamberg et al. failed to find any effect 
of increasing 25(OH)D levels on plasma lipids [53] while a 
similar study by Major et al. found that calcium and vitamin 
D supplementation resulted in decreased LDL-C levels [38].

Several studies have proposed an inverse relationship 
between vitamin D status and insulin resistance [56, 33]. Our 
results are in agreement with the results of others [57, 59]. We 
did find a negative relationship between 25(OH)D and FPI 
and HOMA-IR as an indicator of insulin resistance. Masri 
et al. in their study confirmed the absence of link between 
vitamin D status and insulin resistance in moderate obesity 
[60]. As pancreatic β-cells express vitamin D receptors, a 
potential explanations is that by acting on these receptors 
[34] indirectly regulate calcium entering into the β-cells [35], 
stimulating pancreatic insulin secretion.

The results from our study show that reduction in 25(OH)
D concentration inversely correlates with more adverse 

cardiometabolic factors. Hence, the question is whether 
determining of the degree of vitamin D deficiency can be used 
to estimate cardiometabolic risk in obese patients. A 10-year 
follow-up by, Giovannucci et al. found that men with vitamin 
D deficiency were at higher risk of myocardial infarction [28]. 
In addition, Wang et al. reported that vitamin D deficiency 
is related to 2-fold increased cardiovascular risk among 
participants with hypertension [29].

Vitamin D and dysfunctional adipose tissue
It is well understood that obese people are at higher risk 

of developing comorbidities such as type 2 diabetes mellitus, 
coronary heart disease, myocardial infarction, hypertension, 
and atherogenic dyslipidemia. Individuals with predominantly 
excessive visceral adiposity are particularly vulnerable. 
Adipocytokines derived from adipocytes are involved in the 
pathogenesis of the cardiometabolic disturbances of obesity, 
and their expression and activity are especially elevated in 
visceral fat depots [16].

Observing the subgroup of obese patients with BMI > 
38.4 kg/m2, our results demonstrated significant negative 
correlation between 25(OH)D and leptin serum levels (r = 
-.61, p < .01). Leptin has been proposed to be involved in 
energy homeostasis and modulation of insulin sensitivity [62] 
also being positively associated with visceral adipose mass 
[63]. Recent studies have revealed that serum levels of leptin 
are inversely associated with serum 25(OH)D which is in 
agreement with our results. Karonova et al. found correlation 
between leptin and serum 25(OH)D level (r = -0.15, p = 0.01) 
but this finding was a characteristic seen only in women [64]. 
Resistin, another proinflammatory cytokine, also affects lipid 
metabolism, glucose tolerance, and may play a major role in 
the pathogenesis of metabolic syndrome [56]. With respect 
to its relation to vitamin D deficiency, our study indicates a 
negative correlation between 25(OH)D and resistin serum 
levels (r = -.6, p < .05). This relation was not observed by 
other investigations [45, 67]. The reason for this discrepancy 
is not apparent. However, it has to be noted that a negative 
correlation between leptin and resistin levels with 25(OH)
D concentration was statistically significant only in the 
subgroup of patients with greater BMI. After considering 
the linear dependence and trend between 25(OH)D level 
and leptin and resistin, we found that these parameters are 
inversely dependent: with higher vitamin D levels, leptin and 
resistin have a downward trend. This is the case in all obese 
subgroups, irrespective of whether they are above or below the 
anthropometric medians. Hence, it is possible that this inverse 
relationship becomes manifest only in patients with elevated 
BMI and adiposity.

In contrast to leptin and resistin, adiponectin exerts 
antiatherogenic, anti-inflammatory, and antiplatelet features 
[67]. As such, its concentration is reduced in the presence of 
obesity, type 2 diabetes mellitus, and metabolic syndrome [68]. 
Additionally, adiponectin serum levels have been positively 
associated with plasma 25(OH)D [69]; our results are in 
agreement with these findings. Namely, in the subgroup of 
patients with a higher degree of obesity, a significant positive 
correlation was noted between 25(OH)D and adiponectin 

Table 9: Linear dependencies and growth coefficients between adipocy-
tokines and 25(OH)D within subgroups of WC and FAT Trunk.a

Subgroups 25(OH)D, ng/mL

WC < 126.5 cm Linear Equations Trends Growth 
Coefficient (GC)

Leptin, ng/mL 0.21 × LEP + 41.01 ↑ 0.21

Resistin, ng/mL 0.07 × RES + 12.10 ↑ 0.07

Adiponectin, ng/mL 2.7 × ADP + 1173 ↑ 2.7

WC ≥ 126.5 cm

Leptin, ng/mL -0.34 × LEP + 61.92 ↓ -0.34

Resistin, ng/mL -0.15 × RES + 21.49 ↓ -0.15

Adiponectin, ng/mL 4.3 × ADP + 1076.4 ↑ 4.3

FAT trunk < 25.7 kg

Leptin, ng/mL 0.09 × LEP + 41.89 ↑ 0.09

Resistin, ng/mL 0.01 × RES + 13.50 ↑ 0.01

Adiponectin, ng/mL 3.6 × ADP + 1119.5 ↑ 3.6

FAT trunk ≥ 25.7 kg

Leptin -0.17 × LEP + 59.42 ↓ -0.17

Resistin -0.14 × RES + 21.06 ↓ -0.14

Adiponectin 4.0 × ADP + 1106.7 ↑ 4.0

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; WC, waist 
circumference; FAT trunk, trunk fat mass; LEP, leptin; RES, resistin; ADP, 
adiponectin.
aLinear equations describe regression lines and increasing (↑) or decreasing 
(↑) trends between observed parameters: 25(OH)D and adipocytokines.
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levels (r = .7, p < .001). This correlation became clearer after 
the evaluation of the trend, which showed that the increase in 
vitamin D level follows a similar upward trend adiponectin 
levels. The intensive increase in adiponectin was observed in 
the subgroup of BMI >38.4 kg/m2 with GC of 12.13. This 
finding may be of importance in the context of therapeutic 
options for vitamin D, since both the factors are implicated in 
the development of several cardiometabolic disturbances [47]. 
Also, numerous previous studies proved that intra-abdominal 
obesity has a direct impact on increased CV risk due to the 
increased action of proinflammatory and proatherogenic 
cytokines [49, 66]. In our study, increase in adiponectin was 
also detected within the subgroups of patients who have larger 
WC and FAT trunk, with GCs of 4.3 and 4. This implies that 
changes in abdominal fat mass have an impact on the 25(OH)
D–adiponectin relation.

Conclusion
In the present study, we report a higher prevalence 

of vitamin D deficiency among obese participants and a 
strong association between vitamin D and anthropometric 
measurements of obesity and fat distribution, fat mass, 
insulin resistance, HDL-C, and SBP. With higher vitamin 
D levels, almost all observed cardiometabolic parameters 
showed decreasing trend (except for HDL-C). Thus, vitamin 
D deficiency appears to promote the development of a more 
proatherogenic cardiometabolic risk profile in obese patients 
and individuals with increased fat mass. Measurement of 
vitamin D levels may help to identify individuals at greater 
cardiometabolic risk, and set the basis to design better 
intervention trials in obese patients.

Our results demonstrated negative correlation between 
25(OH)D and leptin and resistin levels while a positive 
association with adiponectin concentrations was found. Linear 
dependence and trend between 25(OH)D level and leptin and 
resistin showed that with higher vitamin D levels, leptin and 
resistin have a downward trend. Further, trend estimation 
showed that increase in vitamin D level is accompanied by 
intensive increase in adiponectin concentrations.

In the view of present findings, we suggest that vitamin 
D supplementation may have a beneficial effect on obesity 
via modulation of adipocytokine secretions. Since the 
dysfunctional adipose tissue is a trigger for cardiometabolic 
disturbances in obese patients, interventional trials are required 
to establish whether vitamin D supplementation could be a 
therapeutic option for improving adipose tissue function and 
thus prevent obesity-related diseases.
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